

Ultrafine Grinding and Atmospheric Oxidation for Refractory Gold Ores

Abrahan Barriga

CONSTRUYENDO JUNTOS UN PERÚ MEJOR

Outline

- 1.- Muestras Salave
- 2.- Oro refractario
- 3.- Tecnologías de extracción de oro refractario encapsulado en pirita/arsenopirita
 - Tostación
 - Oxidación clorurante
 - Oxidación biológica
 - Oxidación a presión
 - Oxidación atmosférica
- 4.- Diseño de pruebas
- 5.- Resultados
- 6.- Conclusiones

Muestras Salave

- Municipalidad de Tapia de Casariego
- Black Dragon

Arcilla

Oro refractario

De acuerdo a Yanopolus (1990), oro refractario es cuando Recuperación < 80% Cianuración con $p80 = 75 - 150 \mu m$

Cianicidas Quimica Descomposición de Consumidores de oxigeno mena Precipitadores de oro Carbón Refractariedad de menas de oro Pirita Oro adjunto o encapsulado Arsenopirita Mas refractario Silice Aleaciones de oro Oro (Sb o Pb) Hidroxidos de submicroscopico hierro Fisica Cloruro de Oro revestido con plata películas de: Compuestos de Sb. Mn. Pb Materiales Oro robado desde carbonosos solucion Pre-oxidacion & impregnada

Teleruros de oro insolubles

Gravedad

Flotacion

Cianuracion

Mas libre por molienda

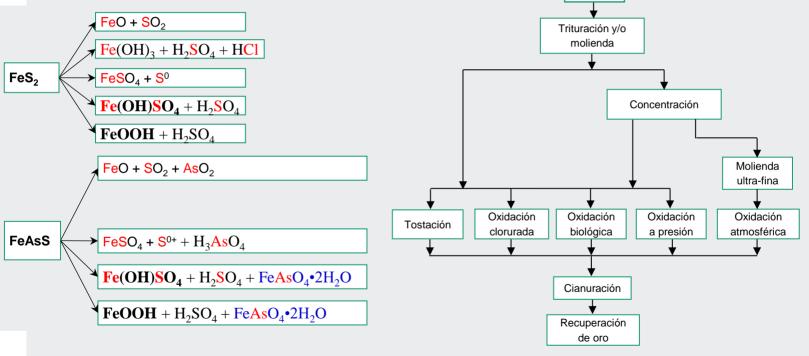
Grueso, atrapado

Granulado-fino,

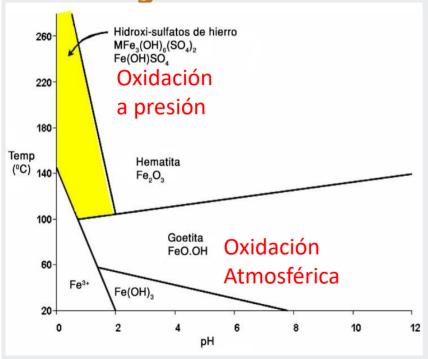
atrapado

Molienda gruesa & Cianuracion ± Flotacion

Flotacion Molienda fina & Cianuracion


cianuracion ± Flotacion

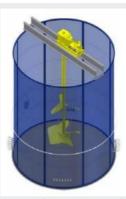
Mena


Tecnologías de extracción de oro

Tecnologías de extracción de oro

Oxidación Atmosférica

SMD


F₈₀ ~ 75 μm

P₈₀ ~ 8 - 20 μm

Densidad Media cerámica Composición química aparente Alúmina 2.0 - 2.1 $Al_2O_3 \ge 85\% - SiO_2$ 3.6 - 3.8Itrio estabilizado - oxido de circonio ZrO₂ (95%) - Y₂O₃ (5%) 3.9 - 4.0Cerio estabilizado - oxido de circonio ZrO₂ (80%) - CeO₂ (20%) 3.2 - 3.4ZrO₂ (97%) - MgO (3%) Magnesio estabilizado - oxido de circonio 2.2 - 2.4Silicato de circonio ZrO₂ (69%) - SiO₂ (31%) Silicato da aluminio Al₂O₃ (34%) - SiO₂ (62%) 1.7 - 1.8

HIGmill

Lixiviación atmosférica Temperatura ~ 95 °C Inyección de oxigeno Residencia ~20 -30 hrs.

Molienda Ultrafina+Lixiviacion Ultrafina

•Las Lagunas, PanTerra Gold (República Dominicana, desde 2012)


-Alimentacion: 3.8 g/t Au; 4.9% S

-Concentrado: 11 g/t Au; 15% S

Ararat, GeoProMining (Armenia, desde 2014)

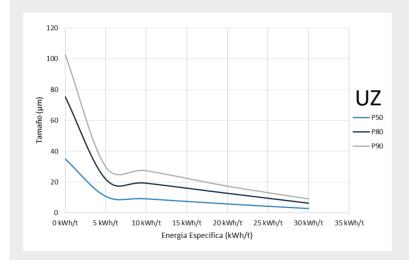
-Alimentacion: 4.5 g/t Au; 1.4% S

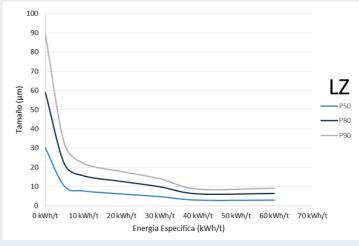
-Concentrado: 40 g/t Au; 3.0% As; 20% S

Diseno de Pruebas

Prueba →	1	2	3	4	5
Energía de molienda (Kwh/t)	30	30	30	-	30
Albión residencia (h)	48	48	48	-	-
Albión pH	4.40	4.80	5.50	-	-
Albión contenido solidos (%)	10%	10%	10%	-	-
Albión CaCO ₃ /Na ₂ CO ₃	90/10	90/10	90/10	-	-
CIL residencia (h)	30	30	30	30	30
CIL pH	11	11	11	11	11
CIL contenido solidos (%)	30	30	30	30	30
CIL CN libre (ppm)	700	700	700	700	700
CIL Carbón activado (g/L)	30	30	30	30	30

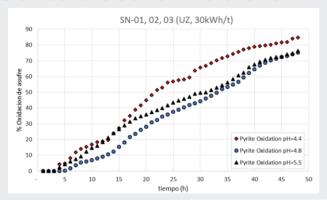
Desarrollo Experimental: Equipos

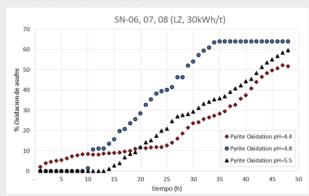


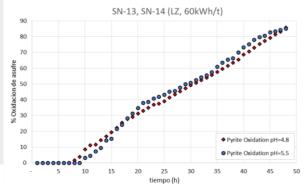


Resultados: Molienda Ultrafina

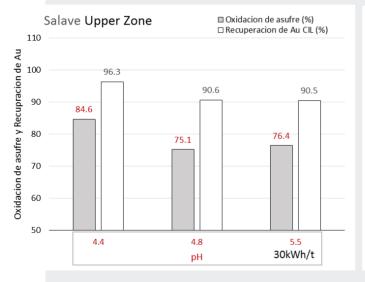
FEED	Au (g/t)	ST (%)	As (%)	Sb (%)
Upper Zone	35.0	19.5	5.50	0.21
Lower Zone	38.0	12.7	9.19	0.53

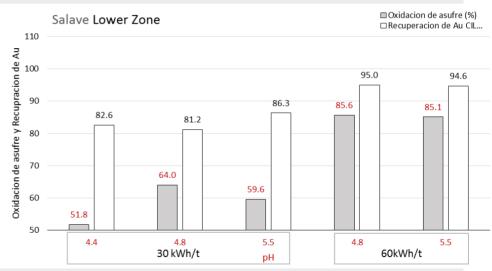






Resultados: Oxidación Atmosférica





Resultados: Oxidación y Cianuración

Conclusiones

- UZ necesita 30kwh/t de molienda ultrafina con oxidación atmosférica a pH=4.4
- LZ mejores resultados con 60 kwh/t de molienda ultrafina y lixiviación Albion a pH=4.8

Muestra	Prueba	Energía especifica (kWh/t)	Albión pH	Oxidación de azufre (%)	Recuperación de Au CIL (%)	Au en alimentación CIL (g/t)	Au en colas CIL (g/t)	Agente de neutralización CaCO ₃ /Na ₂ CO ₃
<u>Upper</u> <u>Zone</u>	SN-01	30	4.4	84.6	96.3	22.28	0.83	90/10
	SN-02	30	4.8	75.1	90.6	22.05	2.07	90/10
	SN-03	30	5.5	76.4	90.5	22.00	2.10	90/10
	SN-04	-	P80=75.50	-	35.1	33.50	21.75	-
	SN-05	30	P80=10.31	-	50.7	33.50	16.50	-
Lower Zone	SN-06	30	4.4	51.8	82.6	36.75	6.40	90/10
	SN-07	30	4.8	64.0	81.2	33.33	6.28	90/10
	SN-08	30	5.5	59.6	86.3	32.20	4.40	90/10
	SN-13	60	4.8	85.6	95.0	29.88	1.51	90/10
	SN-14	60	5.5	85.1	94.6	29.85	1.60	90/10
	SN-09	-	P80=59.2	0.0	7.3	41.00	38.03	-
	SN-10	30	P80=10.55	0.0	29.1	38.00	29.12	-

Conclusiones

- Se ha probado que el proceso de molienda ultrafina y oxidación atmosférica es factible para el muestras del proyecto Salave con recuperaciones en laboratorio de 95% Au
- Se recomienda trabajar con mas zonas de muestreo sistemático además de mezclas de la diferentes zonas consideradas
- Se recomienda pilotaje continuo utilizando parámetros base encontrados en el presente trabajo

Preguntas?

CONSTRUYENDO JUNTOS UN PERÚ MEJOR

